COMBINATORICA

Akadémiai Kiadó – Springer-Verlag

SOME NOTES ABOUT AFFINE DIAMETERS OF CONVEX FIGURES

V. P. SOLTAN and NGUEN MAN HUNG

Received November 3,1988

Given a point x in a convex figure M, let $\gamma(x)$ denote the number of all affine diameters of M passing through x. It is shown that, for a convex figure M, the following conditions are equivalent.

- (i) $\gamma(x) \geq 2$ for every point $x \in \text{int } M$.
- (ii) either $\gamma(x) \equiv 3$ or $\gamma(x) \equiv \infty$ on int M. Furthermore, the set $B = \{x \in \text{int } M : \gamma(x) \text{ is either odd or infinite } \}$ is dense in M.

Let M be a convex figure, i.e., a closed convex set in the plane with nonempty interior. A chord [a,b] of M is said to be an *(affine) diameter* of M if and only there exists a pair of different parellel supporting lines of M each containing one of the endpoints a, b. For some properties of diameters and their generalizations see for example [1], [3].

Denote by $\gamma(x)$ the number of all diameters of M passing through a point $x \in M$. Let $\gamma(x) = \infty$ if infinitely many diameters pass through x. It was mentioned by Hammer [4] that each point $x \in M$ belongs to at least one diameter. In other words, $\gamma(x) \geq 1$.

The following result of Eggleston is well-known.

Theorem ([5]). A convex figure M is a triangle if and only if every point of its interior belongs to exactly three diameters, i.e., $\gamma(x) \equiv 3$ on int M.

This result is a particular case of

Theorem 1. For any convex figure M, the following two conditions are equivalent.

- (i) M is a triangle,
- (ii) $2 \le \gamma(x) < \infty$ for every point $x \in \text{int } M$.

This can be deduced from Eggleston's theorem and the following result.

Theorem 2. For any convex figure M, the following conditions are equivalent.

- (i) $\gamma(x) \geq 2$ for every point $x \in \text{int } M$,
- (ii) either $\gamma(x) \equiv 3$ or $\gamma(x) \equiv \infty$ on int M.

For the proof of Theorem 2 we need two lemmas.

Lemma 3. If the diameters [a,b] and [c,d] of M have no point in common, and a,b,c,d are four points of the boundary of M (in this order), then the arcs $\stackrel{\frown}{ad}$ and $\stackrel{\frown}{bc}$ are parallel line segments.

Lemma 4. Let the diameters [a,b] and [c,d] of M have a common point in int M, and let x be any point in the region bounded by these diameters and the arcs \widehat{ac} , \widehat{bd} . Then there exists a diameter of M that passes through x, and its endpoints are on the arc \widehat{ac} and \widehat{bd} , respectively.

Proof. Suppose that x is in the interior of the region bounded by the diameters [a,b],[c,d] and the arc \widehat{ac} . If the rays $\overrightarrow{b,x}$ and $\overrightarrow{d,x}$ intersect bd M in points b' and d', respectively, then $\widehat{b'd'} \subset \widehat{ac}$. Denote by $[e_1,f_1]$ a chord which minimizes the value ||e-x||/||x-f|| over all chords $[e,f],e\in\widehat{b'd'},f\in\widehat{bd}$ passing through x. We claim that $[e_1f_1]$ is a diameter of M.

Suppose the contrary and denote by ℓ_1, ℓ_2 the two different parallel supporting lines of M, where $e_1 \in \ell_1$. If $f_2 \in M \cap \ell_2$, then $f_2 \in \widehat{bd}$ and $f_2 \neq f_1$, by assumption. Let f'_1 be the point of intersection of the lines ℓ_2 and (e_1, f_1) , and let e_2 be the point of intersection of $\widehat{f_2, x}$ with bd M. Then

$$\frac{\|e_2 - x\|}{\|x - f_2\|} \le \frac{\|e_1 - x\|}{\|x - f_1'\|} < \frac{\|e_1 - x\|}{\|x - f_1\|},$$

contradicting the choice of $[e_1, f_1]$.

Proof of Theorem 2. Suppose first that there is a diameter [y,z] of M lying completely in bd M. Denote by ℓ the supporting line of M parallel to [y,z]. Let $M\cap \ell = [v,w]$. If it is possible to pick a point p in the set int $M\setminus \operatorname{conv}([y,z]\cup [v,w])$, sufficiently close to v, then each diameter of M passing through p is of the form [t,z]. Therefore $\gamma(p)=1$. Because of the convexity of M, we obtain that $[v,y]\subset\operatorname{bd} M$. Similarly $[w,z]\subset\operatorname{bd} M$. Thus, M is either a trapezoid or a triangle (if v=w). In the first case $\gamma(x)\equiv\infty$ on int M, and in the second case $\gamma(x)\equiv3$ on int M.

Assume next that bd M does not contain any diameter of M. We are going to show that in this case $\gamma(x) \equiv \infty$ on $\inf M$. Supppose, in order to obtain a contradiction, that $\gamma(x_0) < \infty$ for some point $x_0 \in \inf M$. We can find a point $v \in \inf M$ and two diameters [a,b],[c,d] through v, not containing x_0 , otherwise $\gamma(x_0) = \infty$. Assume without loss of generality that x_0 is in the region bounded by the diameters [a,b],[c,d] and the arc \widehat{ac} . There is a diameter [y,z] passing through x_0 , for which $y \in \widehat{ac}, z \in \widehat{bd}$. Obviously $a \neq y \neq c$. Since $\gamma(t) \geq 2$, there exists a diameter [v,w] different from [y,z], passing through a point t. We claim that $v \in \inf \widehat{ac}$. Indeed, otherwise we could choose a sequence of points t_1,t_2,\ldots from (x_0,y) tending to y so that every diameter $[\alpha_n,\beta_n]$ of M containing t_n and different from [y,z] statisfies the condition $\alpha_n,\beta_n\notin \inf \widehat{ac}$. Let $[\alpha,\beta]$ be a limiting chord of some subsequence of the sequence $[\alpha_n,\beta_n], n \geq 1$. It is clear that $v \in (\alpha,\beta)$ and $[\alpha,\beta]$ is a diameter of M. Therefore $[\alpha,\beta] \subset \mathrm{bd} M$, which is impossible by our assumption.

So, if t is sufficiently close to y, then $v \in \operatorname{int} \widehat{ac}$. If $w \notin \widehat{bd}$, then diameter [v,w] has no point in common with one of the diameters [a,b],[c,d]. Suppose, say, that $[v,w] \cap [a,b] = \emptyset$. By Lemma 1, we have that $\widehat{av} = [a,v] \mid [bw] = \widehat{bw}$. Now $x_0 \in \operatorname{intconv}([a,b] \cup [v,w])$ implies $\gamma(x_0) = \infty$. Hence, $w \in \widehat{bd}$.

Assume that w = d (the case w = b can be treated similarly). Denote by e the intersection point of the ray \overrightarrow{d}, x_0 and bd M. It is easy to see that [d, e] is a diameter

of M. If a point $s \in (x_0, e)$ is sufficiently close to e then, according to the argument demonstrated above, some other diameter [p,q] passes through s so that $p \in \operatorname{int} \widehat{cv}$. Diameter [p,q] has no point in common with one of diameters [c,d],[v,w]. As above, we obtain $\gamma(x_0) = \infty$.

Hence, we can suppose that $w \in \operatorname{int} \widehat{bd}$. Suppose e.g. that $w \in \widehat{dz}$. Repeating the above arguments we obtain another diameter $[y',x'],y'\in\operatorname{int}\widehat{cv},z'\in\operatorname{int}\widehat{dw}$ passing through x_0 . Evidently, [y,z] and [y'z'] are different.

Proceeding in the same way, we will find an infinite sequence of different diameters countaining x_0 , i.e., $\gamma(x_0) = \infty$, a contradiction.

Corollary 5. If $\gamma(x) \neq \text{const on int } M$, then there is a point $x_0 \in \text{int } M$ with $\gamma(x_0) = 1$.

In view of Theorem 6 and Corollary 5, it might be of some interest to learn more about the values of the function $\gamma(x)$, and about its level sets. A result in this direction is the following.

Theorem 6. For any convex figure M, the set

$$B = \{x \in \text{int } M : \gamma(x) \text{ is either odd or infinite}\}$$

is dense in M.

For the proof of Theorem 6 we need some lemmas. We will say that a line ℓ almost lies in a region P, if only some bounded part of ℓ does not belong to P.

Let a_1, \ldots, a_{2n} be a family of lines in the plane passing through a point O, and indexed counterclockwise. Denote by P_i the double-cone bounded by a_i and a_{i+1} (in this clockwise order), $i=1,\ldots,2n-1$. Let P_{2n} be the double-cone bounded by a_{2n} and a_1 . Then O cuts each line a_i in two rays ℓ_i', ℓ_i'' . Let b_1, \ldots, b_{2n} be some lines, not containing O, so that b_i almost lies in $P_i, i=1,\ldots,2n$. Denote by δ_i' (δ_i'') the number of points of intersection of ℓ_i' (ℓ_i'') with b_1, \ldots, b_{2n} , and put $\delta_i = |\delta_i' - \delta_i''|$.

Lemma 7. At least one of the numbers $\delta_1, \ldots, \delta_{2n}$ is not equal to zero.

Proof. We will establish Lemma 7 by induction on n. The case n=1 is trivial. Suppose, that our assertion is true for all $n \leq m-1$. The lines $a_i, b_i, i=1, \ldots 2m$ will be considered in the cyclic order

 $b_{2m}a_1b_1a_2b_2\ldots a_{2m}b_{2m}$. We say that b_{i-1} and b_i are the neighbours of a_i .

We claim that some line a_i is intersected by its neighbours on the same side relative to 0. Assume the contrary, and direct the lines a_1, \ldots, a_{2n} arbitrarily. Suppose without loss of generality that b_1 intersects a_1 on its positive side. Then all of the lines a_2, a_4, \ldots, a_{2m} are intersected by their neighbours on their negative sides. Therefore b_{2m} intersects a_1 on its positive side, i.e., on the same side where b_1 does, contradiction.

Assume without loss of generality that a_2 is intersected by its neighbours b_1, b_2 at the same side relative to O. Let $\overline{a}_1, \overline{a}_2, \ldots, \overline{a}_{2m-2}$ and $\overline{b}_1, \overline{b}_2, \ldots, \overline{b}_{2m-2}$ denote the lines $a_1, a_4, a_5, \ldots, a_{2m}$ and $b_3, b_4, \ldots, b_{2m-2}$, respectively. By our induction hypothesis, one of the numbers $\overline{b}_1, \ldots, \overline{b}_{2m-2}$ for this family of lines is not equal to zero. It is easy to see that b_1 and b_2 intersect each line $a_i, i \neq 2$ on different sides relative to O. Therefore,

$$\overline{\delta}_1 = \delta_1, \overline{\delta}_2 = \delta_4, \overline{\delta}_3 = \delta_5, \dots, \overline{\delta}_{2m-2} = \delta_{2m}$$
.

Hence, one of the numbers $\delta_1, \ldots, \delta_{2m}$ is not equal to zero.

Lemma 8. Suppose that $\gamma(x)$ is finite for some point $x \in \text{int } M$. Then

- (i) there is a neighbourhood $U \subset \text{int } M$ of x such that $\gamma(y) + \gamma(z) > 2\gamma(x)$ for any pair of points $y, z \in U$ with $x \in (y, z)$;
- (ii) there is a closed set $V \subset \operatorname{int} M$ having nonempty interior such that $x \in \operatorname{bd} V$, and
 - $\gamma(z) > \gamma(x)$ for any $z \in V \setminus \{x\}$ if $\gamma(x)$ is even,
 - $\gamma(z) \geq \gamma(x)$ for any $z \in V$ if $\gamma(x)$ is odd.

Proof. Let $\gamma(x) = n$, and $a_1, \ldots a_n$ be all the diameters of M passing through x. These diameters divide M into n closed regions P_1, \ldots, P_n , where P_i is the part of the double-cone with apex x, bounded by the diameters a_i, a_{i+1} and bd M. (Similarly, P_n is bounded by the diameters a_n, a_1 and bd M.) According to Lemma 4 it is possible to find n new diameters b_1, \ldots, b_n such that both endpoints of b_i are in P_i . Using the condition $\gamma(x) = n$, we obtain that none of the diameters $b_1, \ldots b_n$ contain x. Therefore, one can find a closed disc $\Sigma_{\tau}(x)$ of radius $\tau > 0$ and center x, disjoint from the chords b_1, \ldots, b_n . Let $v_{1i}, \ldots, v_{ni}, i = 1, \ldots, n$, denote the points of intersection of b_i with a_1, \ldots, a_n , respectively. (Some of these points may coincide with each other or with some endpoints of the diameters b_i .)

- (i) We will show that the neighbourhood $U = \Sigma_{\tau}(x)$ meets the requirements of the lemma. Let $y, z \in U$ satisfy the condition $x \in (y, z)$, and let ℓ denote the line determined by y and z. Suppose that the chord $\ell \cap M$ lies almost in P_1 (say). We distinguish two cases, according to whether ℓ contains one of the chords a_1 and a_2 , or not.
- Case 1. Let e.g. $\ell \cap M = a_1$. If (say) y belongs to the segment $[x, v_{1i}], i = 2, \ldots, n-1$, then applying Lemma 4 to the pairs of chords a_i, b_i and b_i, a_{i+1} we obtain the existence of two diameters, different from a_1, \ldots, a_n and passing through y such that their endpoints lie in P_i . Furthermore, if $[x, v_{11}] \cap [x, v_{1n}]$ contains one of the points y, z, then there are at least three diameters through this point, ending in P_1 or P_n (one of these diameters is a_1). Clearly, at least one diameter (namely a_1) passes through the other point. If both $[x, v_{11}]$ and $[x, v_{1n}]$ contain at least one of the points y, z, then there are at least two diameters through y and z each, ending in P_1 or P_n . Hence,

$$\gamma(y) + \gamma(z) \ge 2(n-2) + 4 = 2\gamma(x).$$

Case 2. Assume that ℓ does not contain any line a_1, a_2 , and let w_2, \ldots, w_n be the points of intersection of ℓ with b_2, \ldots, b_n , respectively. Similarly to the previous case, if the interval $[x, w_i]$ contains y (or z), then there are at least two diameters throught this point, different from a_1, \ldots, a_n , such that they end in P_i . In addition, there are two diameters ending in P_1 , passing through y and z, respectively. Hence, again we obtain

$$\gamma(y) + \gamma(z) \ge 2(n-1) + 2 = 2\gamma(x),$$

as required.

(ii) Let $\gamma(x)=n=2k$. By Lemma 7, some diameter $a_i,i=1,\ldots,2k$, contains more than k points from the set $\{v_{i1},\ldots,v_{in}\}$ at the same side relative to x. Without loss of generality we will assume that i=1 and that the ray $\ell_1=\overrightarrow{x},\overrightarrow{a}_1$ (pointing in the positive direction of a_1) contains $m\geq k+1$ points $v_{1ip},p=1,\ldots,m$. Let ℓ_2 be a ray in P_1 sufficiently close to ℓ_1 so that ℓ_2 intersects all diameters $b_{ip},p=1,\ldots,m$; $i_p\neq 1$.

Denote by V the piece of $\Sigma_{\tau}(x)$ between the rays ℓ_1, ℓ_2 . Let $z \in V \setminus \{x\}$. There are two possibilities.

Case 1. $\overrightarrow{x}, \overrightarrow{z} = \ell_1$. Then z belongs to all of $[x, v_{1i_p}], p = 1, \ldots, m$. Analogously to Case 1 part (i), we get

$$\gamma(z) \ge 2(m-2) + 3 \ge 2k + 1 > \gamma(x)$$
.

Case 2. $\overrightarrow{x,z} \neq \ell_1$. The endpoints of the segment $(x,z) \cap M$ belong to P_1 . Therefore this segment intersects all the diameters $b_{i_p}, i=1,\ldots,m$; $i_p \neq 1$ in some points z_{i_p} . Each interval $[x,z_{i_p}]$ contains z. Now we obtain, as before, that

$$\gamma(z) \ge 2(m-1) + 1 \ge 2k + 1 > \gamma(x).$$

Let $\gamma(x) = n = 2k + 1$. One of the two sides of the diameter a_1 with respect to x contains at least $m \ge k + 1$ points of the type v_{1i} . As above, choose a ray $\ell_2 \subset P_1$ and a neighbourhood V. If $z \in \ell_1$, then

$$\gamma(z) \ge 2(m-2) + 3 \ge 2k + 1 = \gamma(x).$$

If $z \notin \ell_1$, then

$$\gamma(z) \ge 2(m-1) + 1 \ge 2k + 1 = \gamma(x)$$
.

Proof of Theorem 6. Assume in order to obtain a contradiction that there is an open neighbourhood U of some point $x_0 \in \operatorname{int} M$ such that $\gamma(x)$ is even (and finite) for all $z \in U$. According to Lemma 4, there exists a closed subset $V_1 \subset U$ with nonempty interior so that $x_0 \in \operatorname{bd} V_1$ and $\gamma(z) > \gamma(x_0)$ for every $z \in V_1 \setminus \{x_0\}$. Choose an arbitrary point $x_1 \in \operatorname{int} V_1$. By Lemma 4, there exists a closed subset $V_2 \subset \operatorname{int} V_1$ with nonempty interior such that $x_1 \in \operatorname{bd} V_2$ and $\gamma(z) > \gamma(x_1)$ for every $z \in V_2 \setminus \{x_1\}$.

Proceeding like this, we construct a sequence $V_1 \supset V_2 \supset \ldots$ of compact sets. Obviously, the set $V = \cap V_i$ is nonempty and $\gamma(z) = \infty$ for every $z \in V$. The last fact is in contradiction with the choice of U. Hence $\overline{B} = M$, completing the proof.

References

- B. GRÜNBAUM: Measures of symmetry for convex sets, In V. Klee ed., Proceedings Symp. Pure Math., Vol VII., Amer. Math. Soc., (1963), 233-270.
- [2] B. GRÜNBAUM: Continuous families of curves, Canad. J. Math., 18 (1966) 529-537.
- T. ZAMFIRESCU: On continuous families of curves. VI. Geom. Dedic., 10 (1981) 205– 217.
- [4] P. C. HAMMER: Diameters of convex bodies, Proc. Amer. Math. Soc., 5 (1954) 304-306.
- [5] H. G. EGGLESTON: Some properties of triangles as external convex curves, J. London Math. Soc., 28 (1953) 32-36.

V. P. Soltan and Nguyen Man Hung

Institute Math. Mech. ul. Grosula 5, Kishinev 277028, U.S.S.R.